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Nonlinear systems with stochastic parameters are approximated by simpler 
systems using a method that we call "statistical replacement." This method is an 
extension of the previously developed AGREE which was restricted to systems 
with additive fluctuations. Statistical replacement incorporates the distinctions 
between globally stable thermodynamically closed systems and ther- 
modynamically open systems that can be unstable. 
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1. I N T R O D U C T I O N  

Nonl inear  stochastic differential equat ions (SDE's)  that  arise in the model- 
ing of physical and chemical phenomena  are seldom amenable to exact 
analytic solution. Monte  Carlo numerical  techniques become exact as the 
number  of  realizations becomes infinite, but  the computer  expense diverges 
in the same limit. Thus it is highly desirable to develop approximat ion  
techniques suitable for s tudying the equilibrium and t ime-dependent 
properties of classes of such nonlinear  stochastic equations. Some 
investigators have developed methods  of  obtaining approximate  solutions 
to nonlinear  SDE's.  (1-5) Alternatively, several others have focused their 
at tention on approximat ing the equat ions themselves and then finding 
exact solutions to the approximate  equations. (6 131In this paper  we 
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implement the latter philosophy. For example, since a linear SDE can 
always be solved exactly, we can seek the best linear equation that will 
reproduce the important features of the solution of the nonlinear SDE. The 
method to be used requires the replacement of the nonlinear equation with 
a linear equation in a prescribed optimal manner. The parameters in the 
linear equation are selected so that the mean squared error (suitably 
defined) made by this replacement is a minimum. Such a minimization 
procedure provides explicit expressions for the parameters of the linear 
equation in terms of moments of the dynamical variables. 

The detailed implementation of the procedure to a particular non- 
linear system depends on the properties that one wishes to represent most 
accurately. "Statistical linearization" has as its aim the accurate calculation 
of steady state moments, steady state correlation functions, and steady 
state spectra. ~6-1~ For this purpose, the moments that are needed to obtain 
the linearization parameters are evaluated using the steady state dis- 
tribution for the process. The linearization parameters obtained from 
statistical linearization are consequently time independent. If the exact 
steady state distribution for the nonlinear process is used in the moment 
evaluation, then this procedure leads to a linear stochastic equation whose 
variables have exactly the same first and second steady state moments as 
those of the original nonlinear equation. We note that in some cases the 
full steady state distribution for the nonlinear problem is indeed available 
even if the time-dependent one (which is needed to calculate correlation 
functions and spectra) is not. If the exact steady state distribution is not 
available, then one must use that of the linearized problem. This leads to a 
self-consistent approximation for the moments and for the linearization 
parameters. The procedure is then equivalent to a Gaussian closure of the 
moment equations followed by the use of these moments to calculate the 
parameters of the linearized system. 

Statistical linearization is a particularly useful technique for the 
calculation of steady state (time-independent) low-order moments. It has 
been shown that better accuracy in the calculation of time-dependent 
properties can be achieved by using the instantaneous time-dependent dis- 
tribution to calculate the moments that must be obtained to obtain the 
linearization parameters. ~11 13) In other words, the parameters of the linear 
equation are allowed to vary with time and are determined by the time- 
dependent moments. The linear equation is thus nonstationary. Since the 
exact time-dependent distribution is not known, one must use that of the 
linearized problem. The moment equations are therefore solved via time- 
dependent Gaussian closure. We named our method AGREE (approximate 
Gaussian representation of evolution equations). (13~ 

SDE's can be classified according to the way in which the fluctuations 
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occur in them. The simplest kind of SDE is one in which the fluctuations 
are independent of the dynamical variables. (14) These are referred to as 
additive fluctuations. Statistical linearization and AGREE have so far been 
developed for and applied to SDE's with additive fluctuations. (15~ The next 
class of SDE's in order of complexity contains parametric fluctuations, i.e., 
fluctuations that occur in the coefficients of functions of the dynamical 
variables. These are referred to as multiplicative fluctuations. Because of 
the multiplicative nature of the fluctuations, all such equations are non- 
linear. The final class involves fluctuations that are not factorable from the 
dynamical variables. Almost nothing is known about the properties of the 
SDE's in the latter class, and we will not discuss them further. Herein we 
extend the technique AGREE to multivariable equations with c~-correlated 
multiplicative fluctuations. 

Many physical phenomena are described by SDE's with multiplicative 
fluctuations. Examples include such phenomena as wave propagation 
through random media in which the index of refraction is a stochastic 
quantity, ~16'17) chemical reactions with fluctuating rate coefficients, (~8'19~ 
laser emission with a fluctuating pump parameter,(2~ diffusion of a passive 
scalar in a turbulent fluid, (2~1 and transport of excitons in molecular chains 
at finite temperatures./2z'231 One can distinguish two types of multiplicative 
fluctuations. There are those fluctuations occurring in thermodynamically 
open systems in which the environment does not respond to the dynamics 
of the system. Such systems need not be asymptotically stable, i.e., it is 
possible that they never achieve a steady state and may in fact become 
unstable. (18) It is also well known that some systems of this type can dis- 
play very interesting fluctuation-induced organizational properties. (Is) A 
thermodynamically closed system, on the other hand, necessarily achieves 
equilibrium asymptotically. This requires that the fluctuations be balanced 
by appropriate dissipative terms in the SDE. (24~ When the fluctuations are 
additive, the dissipation is linear in the dynamical variables of the system. 
Multiplicative fluctuations require the dissipation to be nonlinear in the 
dynamical variables. (24"25) In either case there exists a fluctuation- 
dissipation relation (FDR) that guarantees the attainment of a steady state. 
In thermodynamically closed systems there is thus a constraint on the 
linearization technique whereby the resulting linear equation should itself 
obey some balancing condition that insures equilibration to the same tem- 
perature as the original nonlinear equation. This additional physical con- 
straint on the linearization technique has not been previously addressed. 

In Section 2 we review the methods of statistical linearization and 
AGREE as developed for nonlinear systems with additive fluctuations. In 
Section 3 we develop analogous techniques for approximating systems with 
multiplicative fluctuations in both thermodynamically open and closed 
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systems. In that section we also touch upon the difficulties associated with 
approximating systems with multiple stationary states. A number of con- 
clusions about these techniques are summarized in Section 4. 

2. A D D I T I V E  F L U C T U A T I O N S  

Let us review the linearization techniques for a single-degree-of- 
freedom nonlinear system with additive fluctuations. (6 lo) Consider a 
Langevin equation of the form 

sc = F ( x )  + ~(t)  (2.1) 

where F(x)  is a nonlinear function of the dynamical variable and ~(t) is a 
stochastic function of time. The intent of linearization techniques is to 
replace this equation with a suitably chosen "best" linear equation. 

2.1. Stat is t ica l  L inear izat ion 

In statistical linearization the "best" linear equation is of the form 

2 = c~ + fix + {(t)  (2.2) 

where the constant variational parameters c~ and fl are determined by 
minimizing the mean square value of the error 

=- F(x)  - ~ - fix (2.3) 

made in the steady state by the replacement. From the variational con- 
ditions 0 ( a 2 ) / &  = 0 ( g 2 ) / ( ~ f i  = 0 one finds the relations 

( ~ )  { ( F ( x ' ) s ~  (2.4) 
= M21 \ ( x F ( x ) ) , ]  

where M 2 is the 2 x 2 moment matrix 

M2= <x), <x2>g (2.5) 

Explicit inversion of (2.5) is trivial and yields 

( x e ) s < F ( x )  )~. - <X ) s<xF(x )  )s 
c~ = <x2 ),. - <x)~ (2.6) 

fl = <xF(x)  )~ - (X  )s< F(x)  )s  
( x 2 )  _ <x)2 (2.7) 
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The steady state average ( )s indicated in Eqs. (2.4)-(2.7) is taken over an 
ensemble of realizations of the stochastic function ~(t) at long times t. This 
average is equivalent to an average over an ensemble of the corresponding 
realizations of the dynamical variable. This latter ensemble is specified by a 
steady state phase space density P,(x), so that for any function G(x) we 
have 

( 6(x) ) s -  f dx a(x) P~,(x) (2.s) 

With this prescription it can be seen by direct calculation that (2.2) with 
(2.6) and (2.7) gives exactly the same equations for the first two moments 
( x ) ,  and ( x 2 ) ,  as does the original nonlinear equation (2.1) at 
equilibrium. 

In order to complete the above algorithm one must specify the 
probability density P,(x). This in turn requires knowledge of the statistical 
properties of ~(t). If the fluctuations are Gaussian, zero centered ( ( ~ )  = 0), 
and with correlation function 

( ~(t) ~(~) ) = 2Db(t - v) (2.9) 

then Ps(x)=l imt~oo P(x, t) is the steady state solution of the Fokker 
Planck equation associated with (2.1): 

~P(x,t)=[- 0 023 
~x g(x) + D ~xZJ P(x, t) (2.10) 

Direct integration of (2.10) with the left-hand side set to zero gives 

e x p [ - D  i [.~ ~ F(x') dr'] 
P,(x) = ~ dx e x p [ - D  -1 5x=~ F(x') dx'] (2.11) 

Use of (2.11) in (2.6) and (2.7) then yields explicit values for ~ and fi in the 
linear equation (2.2). 

If the steady state solution P,(x) cannot be obtained (e.g., for most 
multivariable processes), then the averages in (2.6) and (2.7) must be 
calculated using the steady state distribution Ws(x) for the linearized 
process, i.e., the t--, oo solution of the Fokker-Planck equation 

~W(x,t)=[ a 0 2 ] 
Ot -- -~x(C~ + flx)+ D~xz W(x, t) (2.12) 
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This distribution is Gaussian and depends on the linearization parameters 
and/~: 

exp[-D-l(c~x + ~x2/2 ) ] 
W,(x ) = ~ ~-o~ dx exp[ - D - l ( o ~ x  q - /~x2 /2 ) ]  

(2.13) 

Use of this distribution in (2.6) and (2.7) gives equations in which c( and/~ 
appear on both sides. Their solution then gives self-consistent 
approximations to the more exact values obtained from the exact dis- 
tribution. It can easily be checked that this procedure is equivalent to the 
determination of c~ and/? via the closure of the first- and second-moment 
equations obtained from (2.1) as t ~ oe. 

2.2. AGRI =F(~3) 

The method AGREE replaces (2.1) with a linear equation of the form 

2 = ~(t) + ~( t )x  + ~(t) (2.1.4) 

The deterministic functions ~(t) and/3(t) are time dependent and are deter- 
mined by minimizing at each time the mean-squared error resulting from 
the replacement of F(x) by [~(t) +/3(t)x]. The mean square error is 

<82(t) > = < I F ( x ) -  e ( t ) -  ~(t)x] 2 > (2.15) 

The average < > is taken over an ensemble of realizations of the stochastic 
function ~(t) at time t or, alternately, over the corresponding realizations of 
x(t) as specified by the time-dependent phase space density P(x, t). Thus 
for any function G(x) we have 

<G(x) > - f dx G(x) P(x, t) (2.16) 

The derivative conditions O<e~>/&4t)=O<e2>/OB(t)=O then lead to 
equations (2.4) and (2.5) and hence to (2.6) and (2.7) for ct(t) and/~(t) but 
with the stationary averages < >~ replaced by the time-dependent averages 
< >: 

<x2><F(x) > -  <x ><xF(x) > 
~( t ) -  <x2>_ <x>2 (2.17) 

< x F ( x ) ) -  <x)<F(x)> 
fl(t)= <x2) - <x)2 (2.18) 
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The transport equations for the first two moments ( x )  and ( x  2) obtained 
from (2.14) with (2.17) and (2.18) are identical to those obtained from the 
original nonlinear equation (2.1) at all times. 

Since it is precisely the density P(x, t) that is unknown, a further 
approximation must again be made: the averages in (2.17) and (2.18) must 
be evaluated using the probability density W(x, t), i.e., the solution of the 
Fokker-Planck equation (2.12). Since the solution clearly depends on the 
functions c~(t) and /~(t), (2.17) and (2.18) then become self-consistent 
(integral) equations for these functions. The resulting equations are most 
straightforwardly expressed as follows. The density function W(x, t) is a 
Gaussian with time-dependent mean s(t) and variance v(t): 

W(x, t) = [2~zv(t)] - /2 exp{ - Ix - s(t)]2/2v(t)} (2.19) 

The mean and variance are uniquely related to 7(t) and flU) via the dif- 
ferential relations 

f 0 
~(t) = x ~  W(x, t) dr= ~(t) + flU) s(t) (2.20a) 

e(t)  -- f x 2 a W(x, t) d x -  2s(t)  2(t) = 2fl(t) v(t) + 2D (2.20b) 

The use of Eqs. (2.20) together with (2.17) and (2.18) with the averages 
evaluated using (2.19) provides a self-consistent algorithm for the 
evaluation of c~(t) and /~(t). Note that the procedure just outlined is 
equivalent to a time-dependent Gaussian closure of the moment equations. 

We end this section by pointing out that the accuracy of the methods 
reviewed above has been tested by us and by others for a variety of exam- 
ples including generalizations to many degrees of freedom. We refer the 
reader to some appropriate references. (11-13,26-29) Suffice it here to say that 
the accuracy is excellent for a variety of systems over wide ranges of 
parameter values in the original nonlinear equations. 

3. MULT IPL ICAT IVE  F L U C T U A T I O N S  

3.1. Stat ist ical  Replacement  

Let us now consider a more general process governed by the SDE 

(s)  ~ = V(x) + g(x) ~(t) (3.1) 

822/42/5-6-17 
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where {(t) is a random vector with the following statistical properties: 

( { ( t ) )  = 0  (3.2) 

(~(t) ~r(z))  = 2d 6(t- r) (3.3) 

with all higher cumulants being zero. Thus the components ~i(t) of the ran- 
dom vector {(t) are mutually dependent, each with Gaussian statistics of 
zero mean, 8 correlated in time, and constant correlation elements djk. It is 
well known that the choice of white noise in (3.1) requires one to specify 
the calculus to be used in defining the SDE. (3~ We have chosen to interpret 
(3.1) in the Stratonovich sense since we are concerned with physical 
systems for which the correlation time of the fluctuations is small but non- 
zero. The same equation when written as an It6 SDE takes the form 

(I) ~: = f(x) + g(x) r (3.4) 

where the vector f(x) has components 

fi(x)=F~(x)+ ~, [~@k g,(x)~ dj, g,,(x ) (3.5) 
j,k,l 

A significant difference between the It6 and the Stratonovich specification 
of integration lies in the average time integral of the fluctuating term 
g(x) {(t). The average of the It6 integral is zero whereas the corresponding 
Stratonovich integral need not vanish on the average. It is precisely this 
correlation that is added to F(x) to get f(x). 

The many-degree-of-freedom Fokker-Planck equation associated with 
(3.1) is 

? 8 
P(x, t )=  - - ~  ~x,. [F,(x)P(x,  t)] 

j,k,l,m OXl 

In terms of the drift vector f(x) and the diffusion tensor D(x) with com- 
ponents 

Dj~(x) = ~ gj,(x) d,m gk,~(x) (3.7) 
l, r a  

the Fokker-Planck equation (3.6) can also be written as 

P ( x , t ) =  - ~-~x [f,(x)P(x,t)]+ ~ [Djk(x)P(x,t)] (3.8) j.k 8xi 8xk 
This second form could have been written down directly from (3.4). 



Statistical Replacement 987 

As is well known, such general SDE's and/or their associated Fokker- 
Planck equations are usually intractable. This is precisely the set of 
equations for which we intend to generalize the linearization techniques 
discussed in the previous section. We thus intend to approximate (3.1) [i.e., 
(3.4)] with a more tractable SDE, again chosen so as to minimize the error 
made by this replacement. 

General nonlinear SDE's such as (3.1) with multiplicative fluctuations 
arise from a variety of physical problems. From a practical viewpoint, it is 
desirable that the simpler equation used to approximate a general SDE be 
able to reproduce the salient features of the physical problem described by 
the original equation. In other words one should avoid simplifying the 
equation to the extent of losing important qualitative aspects of the 
physical system. The simpler equation used in the method of statistical 
linearization discussed in the previous section is a linear SDE with additive 
noise. At the outset we note that there are some definite qualitative proper- 
ties associated with such a linear equation and therefore it should be used 
only to approximate' a class of general equations which themselves exhibit 
these same qualitative properties. Thus it becomes necessary to associate a 
solvable simple equation to each class of SDE. The particular classification 
is motivated by the associated physical systems. 

In the Introduction we classified SDE's according to the manner in 
which the fluctuations appear in the equation. Having specialized to a par- 
ticular kind of equation (3.1) we then refined the classification according to 
whether or not the SDE describes a thermodynamically closed system. 
There exists a special class of closed systems which exhibit unique charac- 
teristics not associated with other closed systems. A typical member of this 
class is a Brownian particle moving in a bistable potential. We reserve this 
type of closed system as a separate class in itself. 

Having recognized these three classes, we proceed to replace all the 
complicated SDE's in a class with a corresponding equation of the simplest 
form belonging to the s a m e  class. Since not all SDE's can be replaced with 
a linear equation, we propose the name "statistical replacement" for the 
procedure developed here. 

3.2. Closed Systems wi th  a Single Stat ionary  State 

3.2.1. Extension of AGREE.  If a closed system has a single 
stationary state, the laws of thermodynamics dictate that the system 
approach this state asymptotically in time. If the dynamics of the system is 
described by a SDE, then the corresponding probability distribution 
describing the system asymptotically approaches a unimodal stationary dis- 
tribut~on. Since this requirement applies to all equations in this class and 
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since this asymptotic stability is an immensely important physical property, 
we seek the simplest forms of SDE's consistent with this property as 
approximations to the more complicated equations in this class. From 
several candidate SDE's we select 

= ~ + [ix + "/{(t) (3.9a) 

This equation is linear and can be formally solved. In order to keep the 
simplification to a minimum we selected the most general SDE that can be 
solved exactly and at the same time retains the required property of 
asymptotic stability. 

Now the parameters ~, p and ~, are to be chosen in such a way that the 
error made in approximating (3.1) with (3.9a) is a minimum. We first 
attempt an error minimization in the usual manner in order to emphasize 
that it is sometimes necessary to treat SDE's with white noise with some 
care. Following the procedure adopted in Section 2 we calculate the error 
by "subtracting" the right-hand side of Eqs. (3.4) and (3.9a): 

= f(x) - ~ - ]Ix + [g(x) - ?]~(t) (3.9b) 

This expression contains the white noise ~(t) explicitly. Clearly the single 
time correlation matrix ( s s r )  involves the mean square of white noise, 
(~2)  which is an ill-defined quantity. Thus we are faced with the problem 
of finding a more appropriate quantity (or quantities!) to minimize in such 
replacement(s). 

Now we argue that there are two linearly independent quantities to 
consider in the general SDE with multiplicative noise and we determine 
them. A SDE describes two kinds of motion, namely, drift and diffusion. 
When an ensemble of random paths described by the SDE is considered, 
the mean rate of change of the random variables is given by the ensemble 
average of the drift component given by Eq. (3.5), and the fluctuations 
around this mean path are contained in the coefficient of the noise term 
[g(x) in Eqs. (3.1) and (3.4)]. Thus the functions f(x) and g(x) play dif- 
ferent roles. In other words, a stochastic process constructed by superim- 
posing any diffusive motion (of the factorable white noise type) on any 
drift motion can be described by Eqs. (3.1)-(3.8). Moreover, the mapping 
(3.7) from g(x) to D(x) is many-to-one. Even though the diffusion tensor 
D(x) is defined from g(x) uniquely, g(x) cannot be determined from a 
given D(x). The solutions of all SDE's with different g(x) corresponding to 
the same D(x) are statistically equivalent. For example, the equation 

(I) ~ ? = f ( x ) +  [g,(x)  g2(x)] ~ 2 ( t ) ]  (3.10a) 
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as well as the equation 

(I) 2= f(x)+ Ig~(x)+ 2 ~2 g~(x) g2(x)+d22 g2(x)~l/2 ~l(r 1 

give rise to the same diffusion coefficient, namely, 

(3.10b) 

O11(x)=dl~ g~(x)+ 2dl2gl(x ) g2(x)+ d22g2(x) (3.10c) 

and hence to the same Fokker -P lanck  equation. To illustrate further the 
fundamental roles played by the functions f(x) and D(x), let us consider 
the transition probability of the process x(t), 

(3.11) H~(Ax, At) dAx = P(x + Ax, t + At I x, t) dAx 

Equation (3.11) gives the probability of an increment Ax within the inter- 
val At given that the process is x at time t. It is well known that the first 
and second moments  of the increment Ax are given by 

(Ax >x ~ f AxHx(Ax, t) dAx = f(x) At + o(At) (3.12) 

and 

(Ax A x r ) x = D ( x )  At+ o(At) (3.13) 

Therefore, for parameterizing a given SDE we choose the drift vector f(x) 
and the diffusion tensor D(x)  rather than choosing f(x) and g(x). With this 
parametrization the set of all SDE's of the form (3.1) can be viewed as a 
linear space spanned by a "unit drift" and a "unit diffusion," f(x) and D(x)  
being the coefficients of drift and diffusion, respectively) 

Based on the complete representation of a SDE of the form (3.1) by 
the drift vector and the diffusion tensor, we propose the following 
procedure for constructing an approximate SDE of the form (3.9) from the 
original nonlinear SDE. We replace the drift vector f(x) by the 
approximate drift vector ct( t)+ Ii(t)x in such a way that the error in this 
replacement, namely, 

~1 = a + IIx - f(x) (3.14) 

3 It should be noted that for a Markov process any multiple-time distribution function can be 
written as a product of two-time distribution functions each of which is a solution to the 
Fokker-Planck equation. Hence specification of the drift vector f(x) and diffusion tensor 
D(x) are sufficient to also uniquely determine higher-order moment properties of the 
process. 
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is minimized in the mean square sense. We also replace the diffusion tensor 
D(x) by the approximate diffusion tensor "~(t)dvr(t) and again minimize 
the error 

a2 = ~, d ~ , ~ -  D ( x )  (3.15) 

in this replacement. Minimizing <z~ ~lr> with respect to a and il we obtain 
the set of equations 

a + p < x ) = < f >  (3.16) 

and 

a<xT> + I)<xxT> = <fxT> (3.17) 

ct and 11 are uniquely determined by solving this set of algebraic equations. 
Similarly, minimization of <~2~ r> yields the equation 

~, d , lT-  - <D(x)> (3.18) 

Since the moments (x>,  ( x x r ) ,  etc. are in general time dependent, we 
take the parameters a, p and ~/as functions of time so that a(t), p(t) and 
~,(t) are given by the values of the moments at time t. Thus we have 
replaced the original nonlinear equation (3.1) by the linear additive 
equation 

/~ = a(t) + p(t)x + h(t) (3.19) 

where h(t) is a zero-centered, Gaussian, nonstationary random process 
with correlation function 

<h(t) hV(z)) = 2g(t) 6(t - z) (3,20) 

and where g(t) is given by the error minimization as 

la(t) = <D(x)> (3.21) 

Even though h(t) is nonstationary, the form of the correlation function 
(3.20) as a product involving a 6 function implies that h(t) can be factored 
into a stationary white noise and a function of time. The distribution for 
the linearized problem is a multivariate Gaussian with time-dependent 
parameters. 

Strictly speaking the averages indicated on the right-hand side of Eqs. 
(3.16) (3.18) are to be performed using the distribution obtained by solv- 
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ing the exact Fokker-Planck equation (3.8), whereas those on the left-hand 
side are over the Gaussian distribution for the linearized problem. From 
the Fokker-Planck equation (3.6) one can derive the following equations 
for the time evolution of the first and the second moments: 

d 
d--t ( x ) =  ( f )  (3.22) 

,4 
~" (xx r )  = (fx r )  + (xf  T) + 2(D ) 
dt 

(3.23) 

These are the exact moment equations obtained from the original SDE. 
The linearized equation (3.19) yields for the moment equations 

d 
dt ( x )  = a(t) + l l ( t )(x)  (3.24) 

and 

d 
dt ( x x r )  = a ( t ) ( x r )  + ( x )  aT(t) + l~(t)(xx T) + (xx 7-) liT(t) + 21a(t) 

(3.25) 

By virtue of Eqs. (3.16)-(3.18) these moment equations derived from the 
linear equation are identical to the exact ones (3.22) and (3.23). Thus the 
approximation involving separate error minimizations for the drift and the 
diffusion coefficients reproduces the first two moment equations exactly. 

The explicit expressions for ~(t) and p(t) obtained by solving Eqs. 
(3.16) and (3.17) are the multidimensional generalization of Eqs. (2.17) and 
(2.18): 

II(t) = [ ( f x  T) - ( f ) ( x T ) ] [ - ( x x T ) -  (X)(XT)]--1 (3.26) 

it(t) = ( f )  - p ( t ) (x )  (3.27) 

The final step in the implementation of this prescription is the calculation 
of the averages in (3.26) and (3.27). Again one uses the distribution for the 
linearized problem, not only for ( x )  and (xx r )  but also for ( f )  and 
( fx r ) .  As before we obtain a set of ordinary differential equations from 
which the parameters are determined self-consistently. 

The predictions of our results in a few special cases should be noted. If 
g(x) is a matrix with constant elements (additive noise), then (3.23) leaves 
the fluctuations unchanged. The present scheme then reduces to the old 
AGREE. If the drift vector f(x) is linear in x and the fluctuations are mul- 



992 Kottalam, Lindenberg, and West 

tiplicative, then the present scheme leaves the drift term unchanged and 
replaces the multiplicative fluctuations by additive ones. 

3.2.2. Anharmonic  Oscil lator as Example. Just as the har- 
monic oscillator is the workhorse for the description of linear phenomena, 
so too is the anharmonic oscillator for modeling nonlinear phenomena. We 
too shall test our ideas on this generic system. The multiplicative fluc- 
tuations arise as rapid variations in the frequency of such an oscillator. 

Let us consider the displacement x and momentum p of an oscillator 
of unit mass moving in a potential V(x). We have shown elsewhere ~25~ that 
such an oscillator interacting in a particular nonlinear fashion with an 
initially equilibrated bath of oscillators can be described by the stochastic 
evolution equations 

2 = p (3.28a) 

[~= - V ' ( x ) - B ( x ) p + A l ( x ) ~ ( t ) + A z ( x ) ~ 2 ( t )  (3.28b) 

where B(x), A ~(x), and A2(x) depend on the assumed system-bath interac- 
tions. The fluctuations ~i(t) are Gaussian and 6 correlated, with 

( ~i(t) ~j(~) ) = 2kT2~/g)(t - ~) (3.29) 

and 

B(x) = 21, AZ(x) + 2)~12Al(x ) Az(x) + 222AZ(x) (3.30) 

In (3.29) Tis the initial temperature of the bath, and (3.29) and (3.30) con- 
stitute the fluctuation-dissipation relation that ensures eventual 
equilibration of the oscillator with the environment at temperature T. We 
will return to a detailed discussion of this relation in Section 3.2.3. 

Now we wish to apply the scheme developed in Section 3.2.1 to 
Eq. (3.28). Our aim is to replace the set of equations (3.28) with the set of 
linear equations 

"~ = ~1 -~- /~11X -~- fl12 P + hi(t) (3.3 la) 

/~ = ct2 +/~2~x +/~22P + he(t) (3.31b) 

Equations (3.26) and (3.27) for the variational parameters yield 

~1 ~" 0, /~11 = 0, /~12 = 1 (3.32) 

e2 = [ ( Q  )(  ( x 2 ) (  p 2 ) - ( xp  )2) - ( x Q  )(  ( x ) ( p  2) - ( x p  ) ( p  ) ) 

+ ( p Q ) ( ( x ) ( x p )  - ( x 2 ) ( p ) ) ] / D E T  (3.33) 
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~za = [- <Q>((x>(p2>- (P)<xP>)+ (xQ>((p2>- <p)~) 

- <pQ>((xp> - <x>(p>)]/DET (3.34) 

~22= [ (Q >( (x>(xp>- (xZ>(p> ) - (xQ )( (xp>- <x>(p>) 

+ ( p Q > ( ( x 2 >  - (x>2)]/DET (3.35) 

where 
g = - v'(x) - B(x) p (3.36) 

and 

DET= (x2>(p2>- (xp> 2- <x>2<p2> + 2(i><p>(xp>- (x~><p> 2 

(3.37) 
Applying Eq. (3.20) yields 

h i ( t )=0  (3.38a) 

h2(t) = ( (B(x)>/)~l )  1/2 r (3.38b) 

Therefore, the linearized equation is 

k = p (3.3%) 

15=~2+flz lX+f122p+((B(x)>/2~,)I /2  ~ ( t )  (3.39b) 

We have written the expressions (3.33)-(3.35) for a general potential 
V(x) and general interaction function B(x), For a numerical test of the 
results obtained from the linearized equation it is necessary to specialize to 
particular funclions for V(x) and B(x). The simplest multiplicative fluc- 
tuations are obtained if in Eq. (3_28) 

AI(X )= 1, A2(X)=N (3.40) 

For the potential V(x) in (3.28) we select 

V ( x )  ~ ~ .2.  ~ .  5Wo~ -v �88 4 (3.41) 

In previous applications we have analyzed in detail the effect of the quartic 
term in V(x) when As(x)=0,  i.e., with additive lquctuations/~3~ Here we 
study the cases of multiplicative fluctuations with both harmonic (b = 0) 
and anharmonic (b r 0) potentials. 

Consider, then, the SDE 

= p (3.42a) 

15 = - c % x -  bx 3 - (2~ + 22,2x + 222x2)p + ~ ( t )  + X~z(t) (3.42b) 

together with (3.29). The properties of (3.42) are to be reproduced by those 
of the ~inear Eq. (3.39), Of vo~rse a direct comparison of the moment 
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properties of the two would in general require the numerical solution of 
(3.42). We have elsewhere/25~ been able to obtain an exact analytic 
expression for the average energy envelope 

1 (  ~ 2 \  ( E )  = ~ v e + ( v ( x )  ) (3.43) 

of Eq. (3.42) in the limit of weak damping, thus providing us with an alter- 
native test of the utility of the above method. The average energy envelope 
is given in terms of the initial energy Eo -= E(0) by 

k T ( E o  + ckT)  - c k T ( k T -  Eo) e (1 + c-~)~u~ 
( E )  = (3.44) 

(E o + ckT )  - ( k T -  Eo) e (1 + c-')~u, 

with the weak damping condition 

kT)~22 
Zll +--77~ ~ b (3.45) 

(D o 

and where 

C = )~tl ('0g/')~22 kT (3.46) 

The average energy envelope of the linearized system in terms of the first 
and second moments is 

( E ) l i n = � 8 9  l ( D ~ ( x 2 ) + � 8 8  4] (3.47) 

The evolution equations for the moments are obtained by combining 
equations (3.24) and (3.25) with the expressions (3.32)-(3.35) for the 
parameters a(t) and p(t). The resulting equations are 

d 
dt ( x )  = ( p )  (3.48) 

d 
dt ( p )  = - a ) ~ ( x ) - b f x 3 ) - 2 u ( P ) - 2 2 1 2 ( x p ) - 2 2 2 ( x 2 P )  (3.49) 

d (x2)  2 ( x p )  (3.50) 
dt 

d 
dt < x p )  = ( p 2 )  _ (D2(x2)  _ b (x  4) _ )Cll<Xp) _ 22,2(x2p) _ 222(x3p) 

(3.51) 

d 
dt ( p 2 )  = _ 2o~2(xp)  _ 2 b ( x g p )  _ 2 Z l l  ( p 2 )  _ 4)~12(xp2 } 

- 2222(x2p ~)  + 2kT(Z~ + 22~2(x) + 2=(x2 ) )  (3.52) 
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Table I. Comparison of Energy Envelope from the Linearized Equation with 
the Exact Limiting Expression. The Parameter Values Are 

All =A12=Az2=kT=1; tu0= 50 and b = l  

Time Linear Exact 

0.0 3.125 3,125 
0,5 2.283 2.286 
1.0 1,775 1.780 
1.5 1.469 1.473 
2.0 1.284 1,287 
2,5 1,172 1,174 
3.0 1.105 1,105 
3.5 1,064 1.064 
4.0 1.039 1.039 
4.5 1.024 1.023 
5.0 1.014 1.014 

The time-dependent moments are obtained by solving these differential 
equations with given initial conditions compatible with the values of E0, 
the initial energy of the oscillator. Finally, the energy envelope is obtained 
from these moments through Eq. (3.47). In Tables I, II, and III we com- 
pare the exact energy envelope (3.43) with the approximate result (3.47) for 
various values of the parameters co0, b, and 2o.. The two results are found 
to be in excellent agreement at all the times considered. 

Table II. Comparison of Energy Envelope from the Linearization Equation 
with the Exact Limiting Expression. The Parameter Values Are 

AI~ =~,12=~,22=kT= 1; Wo=20 and b = l  

Time Linear Exact 

0.0 0.0201 0.0201 
0.2 0.1973 0.1985 
0.4 0.3429 0.3444 
0.6 0.4615 0.4637 
0.8 0.5598 0.5612 
1.0 0.6395 0.6410 
1.2 0.7043 0.7063 
1.4 0.7584 0.7597 
1.6 0.8023 0.8034 
1.8 0.8379 0.8391 
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Table III. Comparison of Energy Envelope from the Linearization Equation 
with the Exact Limiting Expression. The Parameter Values Are 

A11=A12=A2z=kT=1; ta0=50and b = 0  

Time Linear Exact 

0.0 12.500 12.500 
0.5 7.948 7.917 
1.0 5.201 5.199 
1.5 3.542 3.548 
2.0 2.540 2.546 
2.5 1.934 1.938 
3.0 1.567 1.569 
3.5 1.345 1.345 
4.0 1.210 1.209 
4.5 1.128 1.127 
5.0 1.078 1.077 

3.2.3. Fluctuation-Dissipation Relation (FDR). We men- 
tioned in the Introduction the importance of having an FDR between the 
fluctuation and dissipation terms of the SDE describing a closed system. 
For the anharmonic oscillator in contact with a heat bath such a relation 
naturally emerges in the derivation of the SDE (3.28). This relation is given 
by the FDR contained in Eqs. (3.29) and (3.30) and ensures the proper 
thermal equilibration of the system. It also implies that if the drift term in 
Eq. (3.28) is linear, then the noise is additive. Obviously, if the noise is mul- 
tiplicative, then the equation is necessarily nonlinear. Because the nonlinear 
SDE (3.28) describes a thermodynamically closed system, any 
approximation to it should also reflect this property. In particular, the fluc- 
tuations and dissipation in the approximate description should also 
balance at the same temperature as that of the nonlinear system. Thus if we 
want to approximate the nonlinear oscillator equation with a linear 
oscillator equation, we should make the noise additive. Otherwise, the 
fluctuation-dissipation relation present in the original equation would 
definitely be lost by the approximation scheme. This supports the choice of 
the constant diffusion tensor in the general linearized equation (3.9). It will 
be shown now that this linearization schemes indeed preserves a relation 
required for the thermal equilibration of the system, even though it may not 
be called an FDR in the anticipated sense. 

Thus we seek a relation between/~22(t) and the coefficient of the white 
noise in Eq. (3.39). For this purpose we consider a general potential V(x) 
and a general interaction coefficient B(x). Equation (3.35) gives /?a~(t) in 
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terms of some moments, which in turn can be expressed in terms of the first 
and second moments alone, because the distribution obtained by solving 
Eq. (3.39) is always Gaussian. The equilibrium values of the first two 
moments are easily obtained from the differential equations for the 
moments written down directly from Eq. (3.39). One finds that 

(p)s= (xp),=o (3.53) 

Using these and the factorizability of the moments of Gaussian variables, it 
can be shown that 

/~22,s-= lira ~22(t) = -(B(x))~ (3.54) 
l ~ o o  

This relation can be called an asymptotic FDR and we argue that this 
relation plays the same role here as does the exact FDR contained in Eqs. 
(3.29) and (3.30). This exact relation is a sufficient condition for the 
existence of a stationary solution of the Fokker-Planck equation 
corresponding to the SDE (3.28). The Fokke~Planck equation for the 
nonstationary SDE (3.39) is of the form 

Ot P(x, p, t) = 5~(t) P(x, p, t) (3.55) 

where 5r is a time-dependent differential operator. Therefore, the 
stationary distribution P(x, p, o0) satisfies 

•(oo ) P(x, p, oo)=O (3.56) 

The importance of the FDR is manifest in the existence of a solution to 
Eq. (3.56). Obviously Eq. (3.54) serves the purpose for the nonstationary 
equation. Of course in the case of a stationary SDE the operator 5e is time 
independent and hence asymptotic relations of the form (3.54) imply time- 
independent relations similar to Eqs. (3.29) and (3.30). 

In summary we can state that the linearization procedure developed in 
Section 3.2.1 preserves the FDR present in the original oscillator equation. 

3.3. Open System 

3.3.1. Osci l lator w i th  an Instabil i ty.  In contrast to closed 
systems, open systems need not reach a canonical stationary state as 
t ~ oo. Some open systems do not achieve any stationary state/3~ The fluc- 
tuations and dissipation in open systems need not be balanced since they 
result from distinct physical processes. As a result, when the dissipation is 
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unable to extract energy from the system at a sufficiently high rate the fluc- 
tuations can drive the system unstable. Classes of nonlinear oscillators have 
been studied as prototypes for such unstable systems. Herein we illustrate 
the method of s ta t i s t i ca l  r e p l a c e m e n t  applied to unstable systems using the 
nonlinear oscillator equations as examples. 

A class of unstable oscillators is described by the SDE (31) 

2 = p  (3.57) 
D = --O)Xr - -  22/9 + x q r  + r 

Because of the multiplicative fluctuation term x q ~ l ( t ) ,  Eq. (3.57) cannot 
satisfy a fluctuation~lissipation relation since the dissipation ( 2 > 0 )  is 
linear. In previous studies we have obtained equations for the energy dis- 
tribution of such oscillators in the limit of weak damping, i.e., 2 ~ ~o. 
Detailed analysis has shown that the stability properties of the oscillators 
depends on the discriminant 

s = 2q - r - 1 (3.58) 

which measures the strength of the multipticative fluctuations in relation to 
the steepness of the potential. A stationary distribution for the energy exists 
only if s ~< 0. When s < 0 all moments of the stationary energy distribution 
are finite and the ocillator is globally stable. However, the energy dis- 
tribution is not of the Boltzmann form, but rather is 

P ( E )  = c 1 E -  c2 exp( - c 3 E c4) (3.59) 

where the ci's are derived constants depending on the oscillator parameters. 
When s = 0, a normalizable stationary distribution is obtained only for a 
limited range of values of 2. Moreover, for each value of 2 there is a critical 
value of m beyond which all moments ( E  n) with n >/m diverge. Thus the 
parameter space of Eq. (3.57) is divided into stable and unstable regions for 
the oscillator. 

As another example for this class of systems consider the Lorenz 
description of B6nard convection obtained by truncating the geophysical 
field equations to three degrees of freedom(32): 

2 = a ( y  - x )  (3.60a) 

= v x  - y - x z  (3.60b) 

2 = - - v z  + x y  (3.60c) 
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Knobloch (33) has shown 
appropriate conditions leads to a description of the form 

2 = a p  

b = ax  - bp - xco(t) 

that a further reduction of this set under 

(3.61a) 

(3.61b) 

where p = y - x ,  a and b are parameters, and co(t)-= ~ ( z -  <z))  is assumed 
to be a zero-centered, Gaussian coefficient. By assuming co(t) to be a 
stochastic process and neglecting its own dynamic origin, one loses the 
response of the surroundings (z) to the presence of the system (x and y). 
Therefore (3.61) is a SDE with "external" fluctuations which remain 
unbalanced by any associated dissipation. 

Even though the stability properties of (3.57) were obtained from the 
energy distribution in a limiting case, a general study of systems described 
by Eq. (3.57) is very difficult. We explore the possibility of applying the 
method of statistical replacement to this class of systems. 

An approximation method is usually suggested by the recognition of a 
physical property that simplifies the description. For the thermo- 
dynamically closed systems treated in the last section, the simplifying 
property is the existence of a stationary distribution guaranteed by the 
FDR. This suggested the use of Eq. (3.9). The class of open systems is lack- 
ing such a definite property to guide in the selection of the approximate 
equation to be used. However, in cases where an instability is indicated, we 
can formulate an approximate description using the simplest equation 
exhibiting the same instability. For example, the simplest case of Eq. (3.57) 
corresponds to the choices r = q  = 1. In this special case the equation is for- 
mally linear (or quasilinear) even though the solution is not a Gaussian 
random variable. This case is much easier to study than the general case. 
The differential equations for the moments <xmpn> form a closed set and 
we can analyze the stability properties of these moments in addition to 
those of the energy moments. 

Based on these considerations we propose to approximate (3.57) with 
the equation 

2 = p (3.62a) 

p = c~ + Bx + 7P + x h l ( t )  + hz(t) (3.62b) 

where h~(t) and h2(t) are mutually correlated white noise processes, i.e., 

( h , ( t )  h i ( z ) )  = 2ix o 6(t  - ~) (3.63) 

Equation (3.62) differs from all the approximate equations used so far in 
that it contains multiplicative fluctuations. Both in statistical linearization 
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and in AGREE a general SDE was replaced by one with additive noise. 
Here we show how a nonlinear multiplicative noise can be easily replaced 
with a linear multiplicative noise by following essentially the same 
procedure as in the case of closed systems. 

The variational parameters c~ and fl are again given by minimizing the 
mean square error in approximating the drift term. We find as before that 

0;:  --(D[ ( x r ) (  ( X 2 ) ( p  2 ) -- ( X p ) 2 )  - (xr+ l ) (  ( x ) ( p  2 ) -- ( x p ) ( p )  ) 

+ ( x r p ) ( ( X ) ( X p )  -- ~ x 2 ) ( p ) ) ] / D E T  (3.64a) 

fi=CO[ ( x r ) (  ( x )  ( p  2 ) -  ( p ) ( x p  ) )-- ( X ' + ~ ) ( ( p  2 ) -  ( p )2) 

+ ( x r p ) [ ( x p ) - -  ( x ) ( p ) ) ] / D E T  (3.64b) 

and 

7= - 2)~-o~[ ( x r ) (  ( x ) ( x p )  - ( x 2 ) ( p )  ) - (xr+ l ) (  ( x p )  -- ( x ) ( p  ) ) 

+ ( x r p ) ( x  2)  -- ( x ) 2 ) ] / D E T  (3.64c) 

where DET is given by Eq. (3.37). The error for the diffusion coefficient is 

e2 = D(x) - l~l~x 2 - 2#12x -/~22 (3.65) 

where 

D(x) = d l l  x2q .Jr 2d12 Xq + d22 (3.66) 

Minimizing (e2), we obtain the following set of equations, from which the 
/a,j(t) can be determined: 

~11(x 2 ) + 2~12(x ) + ~22 = (D(x) ) 

#11 ( x3 ) + 2/~12 ( x2 ) + #22(x) = ( x D ( x ) )  

#II(X 4 ) -{- 2U12(X 3 ) + I122(X 2 ) = (x2D(x)5 

(3.67) 

(3.68) 

(3.69) 

As before we evaluate all averages appearing in Eqs. (3.67) (3.69) using the 
distribution corresponding to the simplified equation (3.62). Again we note 
that the first two moment equations are exactly reproduced by this 
replacement. For example, the exact equation for ( p 2 )  obtained from 
Eq. (3.57) is 

d 
dt ( p2 ) = -2oa ( x r p )  - 42( p2 ) + 2 (D(x)  ) (3.70) 
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whereas the simplified equation (3.62) yields 

d 
dt ( p 2 )  = 2o~(p) + 2 f l ( xp )  - 4 2 ( p  2 ) + 2#1 ~ (X 2 ) -}- 4#12(X) + 2#22 

(3.71) 

It is easily seen that Eq.(3.71) is identical to Eq.(3.70) when the 
parameters c~, fl, and 7 are substituted from (3.64a) to (3.64c) and Eqs. 
(3.67)-(3.69) are used. 

3.3.2. Signi f icance of the Number  of Var iat ional  
Parameters. The method of AGREE discussed in Section 2.2 involved 
two parameters c~ and/7 which we uniquely determined by minimizing (e 2) 
with respect to c~ and ft. As a result we found that the first and second 
moment equations are exactly reproduced. If instead of minimizing the 
mean square error we require that the lowest two moment equations 
derived from Eq. (2.2) agree with the exact ones from Eq. (2.1), then we 
would obtain the same expressions for ~ and fi as Eqs. (2.5) and (2.6). Thus 
in this case the method of error minimization and that of fitting the lowest 
two moment equations are equivalent. However, Eq. (3.9), used for replac- 
ing a SDE with multiplicative fluctuations, contains three variational 
parameters and yet only two moment equations are exactly reproduced. 
One can easily verify that the third moment equations derived from the 
approximate equation (3.9) with the parameters given by (3.16)-(3.18) can- 
not be identical to the third moment equations derived from the exact SDE 
(3.1). Similarly in Section3.3.1, Eq.(3.62) contains six variational 
parameters, namely, c~, g, 7, #11, #12, and #22. Even with these six 
parameters we are able to reproduce only the first and second moment 
equations. If we had only attempted to fit two moment equations, we 
would evidently not have had enough equations to determine all the 
parameters without additional constraints. We explain below the nature of 
these additional constraints and how the error minimization performs bet- 
ter than directly fitting moment equations. The discussion below also 
shows that the error minimization procedure can be extended to any 
desired degree. 

For simplicity suppose we have a SDE in one variable with drift and 
diffusion coefficiens f ( x )  and D(x). Let us consider the replacement of the 
SDE with another one whose drift and diffusion coefficients are of the 
following form: 

y (x )  = ~ ctix i (3.72) 
i - - 0  

822/42/5-6-18 
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i.e., a polynomial in x of degree n, and 

/3(x) = ~ flix' (3.73) 
i - - 0  

another polynomial in x of degree m. We stress that these polynomials are 
the most general ones of the given degree. None of the coefficients (not 
even ~o or/3o) is taken as zero a priori. Then the error involved in the drift 
replacement is 

el = ~ ~ixi- f(x) (3.74) 
i = 0  

Minimizing (e~)  we get the equations 

n 

Z C~k(xi+k) = (xif(x)), i = 0 ,  1, 2,... n (3.75) 
k - 0  

Similarly, minimizing the mean square error in D(x) we get 

~, flk(xJ+k)=(xJD(x)), j = 0 ,  1, 2,...,m (3.76) 
k = 0  

c~ and /3i are to be found by solving Eqs. (3.75) and (3.76). From the 
original SDE with the functions f(x) and D(x) we get the moment 
equations 

d 
dt (xt) = l(xZ- if(x) ) + l(l-  1)(x  t 2D(x) ) (3.77) 

The moment equations from the approximate SDE with parameters f(x) 
and/3(x)  are given by 

d (x')  l ~  ~k(x'+k-l>+l(l--1) ~ flk(x'+k-~> (3.78) 
dt k = 0  k = 0  

Now we wish to compare (3.77) and (3.78). The right-hand sides of these 
two equations can be equated using the relations (3.75) and (3.76) 
whenever possible. Since we have Eqs. (3.75) and (3.76) only for i~< n and 
j<~m, Eqs. (3.77) and (3.78) are identical only for those l which satisfy 
l - 1  ~ n  and l - 2 ~ < m .  Thus the number of moment equations exactly 
reproduced by the minimization procedure is min(n + 1, m + 2). 

As discussed in Section 3.2.1, the drift and the diffusion coefficients act 
as linearly independent contributions to the SDE (3.1). This is also obvious 
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from the moment equations (3.77). Each moment equation has two distinct 
parts, one arising from the drift coefficient and the other from diffusion. 
Therefore when we equate the right-hand sides of Eqs. (3.77) and (3.78), it 
is necessary to equate the two parts independently of each other. The two 
sides of Eq. (3.75) represent the drift parts of the ith moment equation 
from the exact and approximate SDE's. Similarly Eq. (3.76) involves the 
corresponding diffusion parts. The first moment equation consists of a drift 
part only. Thus the above minimization with nth and mth degree 
polynomials involves n + m + 2 variational parameters. It reproduces the 
drift parts of the first n + 1 moment equations and the diffusion parts of the 
second,..., (m + 2)nd moment equations. As a result the lowest min(n + I, 
m + 2) moment equations are completely reproduced. Thus the sum of the 
drift and diffusion parts reproduced in the moment equation is equal to the 
number of parameters. 

3.4. Bistable Systems 

An important class of systems is exemplified by a fictitious particle 
whose position x is described by the SDE 

2 = - V ' ( x )  + fl~(t) (3.79) 

where the "potential" V(x) is of the form 

V(x ) = ~oX + �89 x 2 + �89 3 + �88 4 (3.80) 

and the parameters ~i are such that V(x) has two minima and a maximum. 
Interesting physical phenomena are associated with the transfer of 
probability density between the two wells of such a potential. ~15'~8) Physical 
and chemical systems kept far from thermodynamic equilibrium can exhibit 
such multiple stable steady states. One would like to investigate the relative 
stability of these two states, predictability of the relative occurrence of these 
two states, the transfer rate of particles in one state to the other, etc. 

In meteorology the persistence of certain weather conditions for 
unusually long periods is termed blocking. (3.39~ To study this phenomenon 
several authors have proposed truncated hydrodynamic models. These 
models consist of equations of motion for three of the most important 
hydrodynamic modes in atmospheric circulation. These modes exhibit two 
stable regions in the state space corresponding to steady flow. The 
transition between these states needs to be studied by including the 
effects of fluctuations derived from the neglected hydrodynamic modes. 
As this problem involves three state variables, it is more complicated 
than Eq. (3.79). The Lorenz model of B6nard convection mentioned in 
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Section3.3.1 has a strange attractor solution which has a number of 
qualitative features in common with bistable systems. In particular, the 
ergodic distribution of the deterministic trajectory is bimodal. In chemical 
kinetics the rate of reaction is related to the rate of transfer of molecules 
from the potential minimum corresponding to the reactant state to the 
minimum of the product state. 

Suppose a physical process is described by an SDE of the form (3.1) 
where 

f(x) --- 0 (3.81) 

has three real solutions. These solutions correspond to the steady states 
of the physical system. If we replace this SDE with a linear SDE as in 
Section 3.2.1, then we would lose the property of multiple steady states. 
The simplest equation in this class is Eq. (3.79). Therefore we propose to 
replace more complicated equations with Eq. (3.79) following the method 
of statistical replacement. There are three kinds of simplification involved 
in such a replacement. First we attempt to get a single-variable equation 
from the multivariable Eq. (3.1). Secondly, if the drift f(x) has a more 
complicated form than the derivative of (3.80), then we replace f(x) by 
-V'(x). Finally, in many problems the white noise fluctuations appear 
multiplicatively in the SDE. We replace this noise term with an additive 
one, since the multi-steady-state property stems from the drift and is not 
destroyed by the diffusion coefficient. 

In systems of several variables, one is often able to find a variable that 
varies more slowly than the others. One can then reduce the dynamics of 
the system essentially to that of this degree of freedom by eliminating the 
fast variables. If we cannot perform such an elimination, we have to replace 
the original SDE with the simplest SDE in the same number of variables. 
Hereafter we assume that a reduction has been made and we have the 
single-variable equation 

(I) 2 - - f (x )  + g(x) ~(t) (3.82) 

When we minimize the mean square differences between the drift and the 
diffusion coefficients, we get the set of equations 

and 

1 <x> <x ~) 
<x> <x2> <x3> 

\<x 3 ) <.x4> <x 5 ) 

~X3 )~ {CO~ /~f)~ 
I +l<.S>l 

Y:] \<s>l 
= 0  (3.83) 

3= ( g2 )1/2 (3.84) 
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The parameters ~i and/~ can be expressed in terms of the time-dependent 
moments of x by solving Eq. (3.83). 

The practical use of Eq. (3.83) would involve the derivation of a closed 
set of moment equations. The moment equations corresponding to the sim- 
plified SDE (3.79) do not form a closed set. The differential equation for a 
particular moment involves higher moments and therefore the hierarchy of 
moment equations cannot be truncated. This was also the case for 
statistical linearization. There the problem was overcome by invoking the 
Gaussian property of the linear SDE, thereby expressing all higher 
moments in terms of the first two. In the case of Eq. (3.79) no general 
characteristic of the solution is known. Thus the procedure in general 
would involve a numerical calculation of the time-dependent distribution. 
However, we may seek to further approximate this distribution. 
Valsakumar et al/12) have successfully used a double Gaussian for this pur- 
pose in a special case. They studied the dynamics described by a SDE with 
additive noise [of the form (3.79)] and a symmetric potential. When the 
initial condition is also symmetric, the time-dependent distribution was 
taken to be of the form 

-~-a5 ~ ~ +H(x) exp [ 2a 2 j j  (3.85) 

where c is the normalization constant and H(x) is the Heaviside step 
function. 

We have statistically replaced Eq. (3.82) with Eq. (3.79) with a time- 
dependent potential. The parameters in the potential function (3.80) are 
given by the time-dependent moments of x through (3.83). In the general 
problem of multistable systems, additional phenomena are involved if the 
potential in Eq. (3.82) [ V(x) such that V'(x)= - f ( x ) ]  is symmetric. These 
phenomena include equistability and coexistence of two phases. We now 
address the question of whether the statistical replacement preserves this 
symmetry. Suppose the drift f (x )  is an odd function of x. This in itself does 
not imply that c% and ~2 are zero. Equation (3.83) implies that the 
parameters ~i(t) are different for different initial values of the moments. 
Thus c%(t) adjust themselves to describe the particular dynamics starting 
from the given initial distribution. The system dynamics is symmetric only 
if the initial condition is also symmetric in addition to the symmetry of the 
potential. Let us consider an initial distribution for which all the odd 
moments are zero. The matrix in Eq. (3.83) contains the odd and even 
moments regularly arranged in a lattice. Therefore its inverse also must 
have the same structure. In other words, wherever there is an odd moment 
in the matrix, the corresponding element in the inverse is a sum of terms 
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each of which has an odd number of odd moments as factors. Combining 
this with the fact that f ( x )  is odd, we conclude that the expressions for 
c%(t) and ~2(t) in terms of the moments are of odd symmetry, and ~l(t) and 
~3(t) are of even symmetry. The equations for the moments obtained from 
the SDE (3.79) are given by 

d 
dt {xn ) = n~176  1 ) + noel (Xn)  + FlO~2~X n + 1) 

+ n~3(x "+2) + n(n -- 1) [3(x n - 2 )  (3.86) 

It is verified that if all the odd moments are initially zero, they remain zero 
for all times. This means that e0(t)= c%(t)= 0 and the time-dependent dis- 
tribution is always symmetric. 

4. C O N C L U S I O N  

We have reviewed methods of approximating SDE's via methods that 
are generalizations of statistical linearization. To our knowledge all 
previous work has been restricted to SDE's with additive fluctuations. We 

"have presented ways of extending these methods to include SDE's with 
multiplicative fluctuations. We found it necessary and convenient to treat 
the drift and diffusion coefficients as independent parameters of a SDE. We 
showed that such a description of the SDE is complete. This recognition 
led to an error minimization procedure whereby the drift and diffusion 
coefficients of the given SDE could be replaced by simpler drift and dif- 
fusion coefficients giving rise to a simpler SDE. 

The optimization procedure developed here can be applied between 
any given pair of original SDE and simpler SDE provided the drift and dif- 
fusion coefficients of the simpler SDE are polynomials in the state 
variables. This leaves a freedom in the choice of the simple SDE. This 
choice was made based on two criteria. The more important criterion is 
that the simple SDE should reflect the important qualitative properties of 
the underlying physical system. The second criterion is that the 
approximate SDE should be as simple as possible without violating the 
first criterion. In order to implement the first criterion we classified physical 
systems into three classes according to whether the system is ther- 
modynamically closed or open and according to the number of steady 
states. 

For closed systems with a single equilibrium we used a linear SDE 
with additive fluctuations as an approximation: Using the Gaussian nature 
of the solution of the linear equation we were able to calculate the 
parameters in the linear equation in a self-consistent manner. This 
replacement process left the first two moment equations from the original 
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SDE unaltered, even though the equations for high moments were changed. 
We studied an anharmonic oscillator as an example using the linearized 
equation and compared the resulting energy envelope with the exact energy 
envelope. The agreement is excellent. We also showed that the balance 
between fluctuations and dissipation present in the original SDE is preser- 
ved by the replacement. 

We treated mechanical oscillator systems with biased fluctuations and 
dissipation as examples for open systems. Unlike closed systems, this class 
of systems lacks a well-posed constraint. However, when an instability is 
indicated, we proposed to replace the SDE with a linear one but with mul- 
tiplicative fluctuations. Again the first two moment equations were 
reproduced. In Section 3.3.2 we showed a relationship between the number 
of variational parameters used in the approximating equation and the 
number of moment equations reproduced. 

The final class treated here consists of systems with two stable steady 
states. Even the simplest equation describing such systems cannot be solved 
exactly. However, Eq. (3.79) has been extensively studied in the literature 
and several approximation methods have been developed. Therefore we 
have taken Eq. (3.79) as essentially solvable. The corresponding mul- 
tivariable SDE has not been studied to the same extent. Thus we have 
shown how to replace a one-variable general SDE with the SDE (3.79) 
with additive fluctuations. When the original problem (i.e., the SDE and its 
initial conditions) is symmetric, the approximating problem also involves a 
symmetric potential. 

The spirit of this presentation has been to indicate how the method of 
statistical replacement is potentially useful in a variety of circumstances. 
We anticipate that this method would be most useful in the case of closed 
systems with a single equilibrium. This is due to the Gaussian nature of the 
approximating solution. In other cases the method of statistical 
replacement is equally well applicable; however, the resulting equations 
cannot be so readily solved. 

A C K N O W L E D G M E N T  

This work was supported in part by NSF grant No. ATM83-10672 
and No. ATM83-10673. 

R E F E R E N C E S  

1. N. G. van Kampen, J. Star. Phys. 17:71 (1977). 
2. B. Caroli, C. Caroli, and B. Roulet, J. Stat. Phys. 21:415 (1979). 
3. B. Caroli, C. Caroli, B. Roulet, and J. F. Gouyet, J. Star. Phys. 22:515 (1980). 
4. P. Hunt, K. Hunt, and J. Ross, J. Chem. Phys. 79:3765 (1983). 



1008 Kottalam, Lindenberg, and West 

5. M. C. Valsakumar, in Stochastic Processes: Formalism and Applications, Lecture Notes in 
Physics No. 184, Duttagupta, ed. (Springer, New York, 1983). 

6. W. D. Iwan and I-Min Yang, J. AppL Mech. 39:545 (1972). 
7. J. D. Mason, ed., Stochastic Differential Equations and Applications (Academic Press, New 

York, 1977), 
8. T. K. Caughey, in Advances in Applied Mechanics, Vol. 11 (Academic Press, New York, 

1971), pp. 209553. 
9. S. H. Crandall, Int. J. Nonlinear Mech. 15:303 (1980). 

10. B. J. West, K. Lindenberg, and K. E. Shuler, J. Stat. Phys. 18:217 (1978). 
11. J. O. Eaves and W. P. Reinhardt, J. Stat. Phys. 25:127 (1981). 
12. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna, J. Stat. Phys. 30:617 

(1983). 
13. B. J. West, G. Rovner, and K. Lindenberg, J. Stat. Phys, 30:633 (1983). 
14. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36:823 (1930). 
15. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 

Amsterdam, 1981). 
16. V. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961). 
17. U. Frisch, in Probabilistic Methods in Applied Mathematics, Vol. 1, A. T. Bharucha-Reid, 

ed. (Academic Press, New York, 1968). 
18. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, 1984). 
19. K. Lindenberg and B. J. West, Physica 119A:485 (1983). 
20. K. Kaminiski, R. Roy, R. Short, and L. Mandel, Phys. Rev. A 24:370 (1981). 
21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959). 
22. K. Lindenberg and B. J. West, Phys. Rev. Lett. 51:1370 (1983). 
23. B. J. West and K. Lindenberg, Z Chem. Phys. 83:4118 (1985). 
24. B. J. West and K. Lindenberg, in Proceedings of  the Workshop on Fluctuations and Sen- 

sitivity in Nonequilibrium Systems, V. Kondepudi and W. Horsthemke, eds. (Springer- 
Verlag, Berlin, 1984). 

25. K. Lindenberg and V. Seshadri, Physica A 109:483 (1981). 
26. B. Morton and S. Corrsin, J. Stat. Phys. 2:153 (1970). 
27. A. Bulsara, K. Lindenberg, K. E. Shuler, R. Frehlich, and W. A. Coles, Int. J. Non-Linear 

Mech. 17:237 (1982). 
28. T. Okada, J. Phys. Soc. J. 53:1943 (1984). 
29. M. W. Evans, P. Grigolini, and G. Pastori Parravicini, eds., Memory Function Approaches 

to Stochastic Problems in Condensed Matter (Wiley-Interscience, New York, 1985). 
30. K. Lindenberg, K. E. Shuler, V. Seshadri, and B. J. West, in Probabilistic Analysis and 

Related Topics, Vol. 3, A. T. Bharucha-Reid, ed. (Academic Press, New York, 1983). 
31. V. Seshadri, B. J. West, and K. Lindenberg, Physica 107A:219 (1981). 
32. E. N. Lorenz, J. Atmos. Sci. 20:130 (1963). 
33. E. Knobtoch, J. Stat. Phys. 20:695 (1979). 
34. J. G. Charney and J. G. De Vote, J. Atmos. Sci. 36:1205 (1979). 
35. J. Egger, J. Atmos. Sci. 38:2606 (1982). 
36. R. Benzi, A. R. Hansen, and A. Sutera, Q. J. R. Meteor. Soc. 110:393 (1984). 
37, R. E. Moritz, in Predictability of Fluid Motions, G. Holloway and B. J. West, eds. AIP 

Conference Proceedings, Vol. 106 (American Institute of Physics, New York, 1984), 
p. 419. 

38. K. Lindenberg and B. J. West, J. Atmos. Sci. 41:3021 (1984). 
39. K. Lindenberg, B. J. West, and J. Kottalam, to appear in the ASI Proceedings of the con- 

ference on Irreversible Phenomena and Dynamical Systems Analysis in Geosciences (Crete, 
Greece, July 1985). 


